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Abstract: 
The Ljung-Box test is known to be robust.  This paper reports on simulations that show just how 
robust it is in finite samples.  Even so, we demonstrate some practical applications where the 
robustness of the test fails dramatically.  The Ljung-Box test on the ranks of the data provides a 
suitably robust alternative when the distribution is extremely long-tailed.  In particular, the rank 
Ljung-Box test is highly recommended over the Ljung-Box test for evaluating the adequacy of 
GARCH models.  Simulations also explore properties of the test when applied to binary data.  
There is some evidence that the test starts to deteriorate as the number of lags exceeds 5% of the 
length of the series whether or not the data are long-tailed. 
 

1.  Introduction 
 
The portmanteau test of Ljung and Box (1978) is commonly used to test the quality of fit 
of a time series model. If significant autocorrelation is not found in the residuals from the 
model, then the model is declared to pass the test.  The Ljung-Box test is known to be 
robust to outliers, nonetheless, several robust alternatives have been proposed—examples 
are Li (1988) and Chan (1994).  Pena and Rodriquez (2002) introduce a test that is 
generally more powerful in the Gaussian setting. 
 
The present article investigates how robust the Ljung-Box test and its rank equivalent are.  
Applications in finance motivate the study.  Simulations are used to explore both the null 
distribution and the power of the Ljung-Box test and the rank test in finite samples.  This 
is done where the data come from the Gaussian distribution, several long-tailed 
distributions and some binary distributions.  Runde (1997) looks at the asymptotic 
distribution under some infinite variance distributions. 
 
The remainder of the article is arranged as follows.  Some applications are highlighted in 
section 2 which informed the choices for the simulations.  The Ljung-Box test is defined 
and its robustness discussed in section 3.  Section 4 provides details of the simulations.  
Simulation results under the null hypothesis are presented for continuous distributions in 
section 5, and for binary distributions in section 6.  The power of the test under 
continuous distributions is explored in section 7.  Section 8 concludes. 



2 

 

2. Some Financial Applications  
 
Three applications in which the Ljung-Box test may play a part are discussed.  Although 
most distributions in finance are non-Gaussian, the distributions resulting from these 
applications are particularly far from the Gaussian. Extremely long-tailed distributions 
are encountered in the test of squared residuals from GARCH models. Binary series are 
used to test the quality of Value at Risk estimates, and the consistency of the quality of 
predictions. 
 
 Choices for the simulations were influenced by these applications. 

GARCH Modeling 
 
Engle (1982) and Bollerslev (1986) introduced GARCH models—these account for the 
volatility clustering that is often seen in the return series of market-priced assets.  An 
example is the popular GARCH(1,1) model: 
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where ht is the variance at time t conditional on past information, and εt is the residual at 
time t.  The three parameters of the model are α, β and ω—there would also generally be 
a parameter for the mean of the series.   
 
Given an estimate of the parameters for a model, it is desirable to determine if the model 
adequately explains the variance process.  A common approach is to divide each residual 
by the estimated standard deviation for that time point, and square these standardized 
residuals.  Finally perform a Ljung-Box test on the squared standardized residuals (minus 
their mean).  If the statistic is large, then there is evidence that the model is inadequate. 
Wong and Li (1995) studied the rank Ljung-Box test in this setting.   
 
Consider the example of the S&P 500 for dates from 2 January 1985 through 31 
December 2001.  The return series for this data has 4292 observations.  We’ll start with a 
six-parameter model.  The Ljung-Box test statistic with 15 lags for the model is 30.57, 
giving a p-value of 1%.  This is as we expect since the model is known not be very 
good—it is a GARCH(0,4) model (that is, an ARCH(4) model) assuming a Gaussian 
distribution for the residuals.  This model has four lags of the squared residual and no 
lags of the conditional variance. 
 
Now we move to a model that is known to be (relatively) good for this dataset.  It is a 
component model of Engle and Lee (1999) with leverage assuming the t-distribution for 
the residuals.  The leverage is in the style of Glosten, Jagannathan and Runkle (1993).  
The model follows the two equations: 
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where the parameters to be estimated are ω, ρ, φ, α, β and λ.  Again, ht is the conditional 
variance.  The notation e- means –e when e is negative and zero otherwise.  The fitted 
model has two additional parameters—one for the mean of the series, the other for the 
degrees of freedom of the t-distribution—making a total of 8 parameters. 
 
The Ljung-Box test statistic for this new model is now 4.71, which has a p-value of 
0.9943.  We have done very well indeed by this measure.  In fact the statistic is so small 
that we might consider rejecting in the other direction.  That is, the statistic seems to be 
trying to tell us that we have overfit the data, but with 8 parameters on four thousand 
observations, this hardly seems likely. 
 
The story changes when we consider the Ljung-Box test on the ranks of the squared 
standardized residuals.  For the first model—the ARCH(4) —the rank Ljung-Box has a 
statistic of 97.6 which has a p-value of zero to double precision.  The rank Ljung-Box has 
a statistic of 37.2 (p-value 0.0012) for the components model.  Rather than saying the 
components model is perfect, the rank test implies that there is still some unexplained 
autocorrelation in the variance. 
 
When fitting GARCH models, the number of daily observations should be at least a 
thousand, and a few thousand observations are often used.  Maximum likelihood 
estimates of the degrees of freedom often fall in the range of 5 to 8 when assuming a t 
distribution for the residuals of daily returns.  It has become typical to use 15 lags in the 
Ljung-Box test for GARCH models.   
 

Value at Risk Estimation 
 
Value at Risk (VaR) has become a standard tool in the field of risk management.  Perhaps 
its greatest strength is that it is intuitive and easy to explain.  It is the amount of money 
that we expect to lose more than with some given probability—usually 5% or 1%.  
However, its ease of explanation belies the difficulty of estimating it.  The statistical task 
is to estimate a given quantile of a distribution that constantly changes.  See Jorion (2000) 
for background and references. 
 
The hit series of past VaR’s is created in order to investigate the quality of a VaR 
estimator.  This series is zero when the actual loss does not exceed the VaR, and one 
when it does.  The mean of this series should be equal to the probability level.  Also the 
series should not have autocorrelation.  If it does, then a better VaR estimator exists since 
the autocorrelation implies that the probability of a hit is not constant and hence not 
always equal to the stated probability level.  An alternative approach to testing VaR—the 
dynamic quantile test—is proposed in Engle and Manganelli (1999). 
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The Ljung-Box test and the rank Ljung-Box test are the same for hits as there are only 
two distinct values.  Burns (2002) investigates a number of VaR estimators—tests of the 
10-day VaR estimates where there are 1550 observations have a suspiciously high 
number of p-values very close to one for the better estimates.  This is more pronounced 
for the 1% estimates than for the 5% estimates.  In the 1% case it isn’t hard to believe that 
the distribution might be off as we are expecting only about 15 non-zero values. 
 

Correct Predictions 
 
It is common to try to predict if the price of an asset will go up or down in a given time 
period in the future.  A backtest of the predictions will give a binary series that is one if 
the prediction turned out to be correct and zero otherwise.  Hence a binary series results 
that is approximately 50% ones.  In this application autocorrelation is not necessarily a 
bad thing, but it is useful to know if it exists.  Should autocorrelation be found, that 
knowledge may provide clues to improve the prediction. 
 

3.  An Examination of the Test 
 
 
The lag k autocorrelation statistic of a time series xt (with mean zero) of length n is: 
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The M lag Ljung-Box statistic is defined as: 
 

∑
= −

+=
M

k

k
M kn

r
nnQ

1

2

)2(  

 
 
The equivalent rank test merely substitutes the mean-centered rank of xt within the time 
series for the actual value of xt.  Thus it is simple to produce the rank test with existing 
software. 
 
Let’s examine the robustness of the Ljung-Box test from an abstract point of view.  
Suppose we have a white noise series of standard Gaussians, and two outliers are 
introduced that are on the order of 100, say.  How does this affect the statistics rk? 
 
The denominator of rk is greatly increased because of the two outliers—this tends to 
decrease the Ljung-Box statistic.  For values of k not equal to the distance between the 
outliers, there will be no large terms in the numerator—only the products of the outliers 
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with typical values.  The value of rk will be very large when k is equal to the distance 
between the outliers.  Thus in this simplified world as the number of lags increases, the p-
value will drift towards 1, suddenly drop towards 0, then drift larger again.  Exhibit 1 
shows similar behavior for the Ljung-Box test when the data are the squares of values 
from Student’s t with 4 degrees of freedom.  Since the series is a random sample, the p-
value should ideally be neither small nor large—as we see with the rank Ljung-Box test. 
 
Exhibit 1.  Ljung-Box and rank Ljung-Box p-values for a dataset of random squared t 
with 4 degrees of freedom. 
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4.  Simulation Details 
 
A number of distributions are simulated.  Each distribution, whether under the null 
hypothesis or given a particular parametric model in the alternative, is estimated with 
10,000 replicates.  In the AR(1) models for a given combination of distribution and 
number of observations, the same innovations are used for different AR parameters.  
Series of lengths 100, 1000 and 10,000 are studied.  The lags of the Ljung-Box test and 
the rank test are 5, 15 and 50. 
 
The continuous distributions that are studied are the Gaussian, Student’s t with 10 
degrees of freedom, the t with 4 degrees of freedom, and the t with 1 degree of freedom 
(i.e., the Cauchy).  The square of each of the three t distributions is also studied.  For the 
power simulations on the squared distributions, the AR(1) process is generated as usual 
and then each element of the series is squared.  The probabilities of a one in the binary 
series are 50%, 5% and 1%. 
 
The simulations were carried out in S-PLUS version 3.4 for Sun Solaris. 
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5.  Null Distribution with Continuous Distributions 
 
If the null hypothesis holds, then the p-value of a test should have a uniform(0,1) 
distribution.  Exhibit 2 gives the results of Kolmogorov-Smirnov tests of the distribution 
of the p-value of the Ljung-Box and rank Ljung-Box under the Gaussian distribution 
when the null hypothesis of no autocorrelation applies.  Bold entries in this and later 
exhibits indicate that the Kolmogorov-Smirnov test is not significant at the 5% level—
that is, when there is little evidence to suppose that the test for autocorrelation is 
performing poorly. 
 
Exhibit 2.  Kolmogorov-Smirnov test statistic (p-value) of the p-value distribution under 
the null hypothesis with Gaussian data. 
# observations, # lags Ljung-Box test Rank Ljung-Box test 

 
100 obs., 5 lags 8.9e-3 (0.41) 0.011 (0.18) 
100 obs., 15 lags 0.021 (2.9e-4) 0.030 (3.4e-7) 
100 obs., 50 lags 0.058 (0) 0.060 (0) 
1000 obs., 5 lags 5.9e-3 (0.88) 6.5e-3 (0.79) 
1000 obs., 15 lags 0.010 (0.27) 7.0e-3 (0.71) 
1000 obs., 50 lags 0.011 (0.17) 0.012 (0.12) 
10,000 obs., 5 lags 8.6e-3 (0.45) 5.3e-3 (0.94) 
10,000 obs., 15 lags 8.4e-3 (0.49) 7.0e-3 (0.71) 
10,000 obs., 50 lags 5.6e-3 (0.92) 6.6e-3 (0.77) 
 
Both tests do well in this setting, though the rank test performs a little worse when the 
series is only 100 long.  It is known that the number of lags for the Ljung-Box test should 
be small relative to the number of observations—Exhibit 2 provides some guidance in 
this regard.  Exhibit 3 shows the distribution of p-values under the null hypothesis in the 
extreme case of 50 lags with only 100 observations. 
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Exhibit 3.  Distribution of the 50-lag Ljung-Box p-value under the Gaussian distribution 
with 100 observations. 
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Exhibits 4 through 9 indicate the quality of the tests under the null hypothesis with non-
Gaussian distributions.  As the tails get longer, the Ljung-Box test deteriorates but it 
deteriorates slower for series with a large number of observations.  The rank test remains 
stable relative to the tail length. 
 
Exhibit 4.  Kolmogorov-Smirnov test statistic (p-value) of the p-value distribution under 
the null hypothesis with Student t 10 degrees of freedom data. 
# observations, # lags Ljung-Box test Rank Ljung-Box test 

 
100 obs., 5 lags 8.6e-3 (0.44) 0.016 (0.012) 
100 obs., 15 lags 0.028 (6.0e-7) 0.025 (7.4e-6) 
100 obs., 50 lags 0.079 (0) 0.061 (0) 
1000 obs., 5 lags 5.7e-3 (0.90) 9.2e-3 (0.36) 
1000 obs., 15 lags 9.4e-3 (0.34) 7.8e-3 (0.58) 
1000 obs., 50 lags 0.015 (0.028) 0.021 (2.2e-4) 
10,000 obs., 5 lags 7.9e-3 (0.56) 4.8e-3 (0.98) 
10,000 obs., 15 lags 8.4e-3 (0.48) 6.9e-3 (0.73) 
10,000 obs., 50 lags 6.4e-3 (0.81) 9.6e-3 (0.31) 
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Exhibit 5.  Kolmogorov-Smirnov test statistic (p-value) of the p-value distribution under 
the null hypothesis with Student t 4 degrees of freedom data. 
# observations, # lags Ljung-Box test Rank Ljung-Box test 

 
100 obs., 5 lags 0.034 (2.9e-7) 0.010 (0.22) 
100 obs., 15 lags 0.059 (0) 0.028 (6.2e-7) 
100 obs., 50 lags 0.12 (0) 0.066 (0) 
1000 obs., 5 lags 0.012 (0.13) 7.0e-3 (0.71) 
1000 obs., 15 lags 0.015 (0.017) 7.6e-3 (0.61) 
1000 obs., 50 lags 0.028 (7.8e-7) 0.011 (0.15) 
10,000 obs., 5 lags 6.7e-3 (0.76) 8.8e-3 (0.41) 
10,000 obs., 15 lags 9.1e-3 (0.38) 6.7e-3 (0.76) 
10,000 obs., 50 lags 9.0e-3 (0.39) 8.7e-3 (0.44) 
 
Exhibit 6.  Kolmogorov-Smirnov test statistic (p-value) of the p-value distribution under 
the null hypothesis with Student t 1 degree of freedom (Cauchy) data. 
# observations, # lags Ljung-Box test Rank Ljung-Box test 

 
100 obs., 5 lags 0.49 (0) 0.016 (0.011) 
100 obs., 15 lags 0.53 (0) 0.025 (1.2e-5) 
100 obs., 50 lags 0.63 (0) 0.066 (0) 
1000 obs., 5 lags 0.69 (0) 0.011 (0.20) 
1000 obs., 15 lags 0.72 (0) 6.1e-3 (0.86) 
1000 obs., 50 lags 0.71 (0) 0.016 (0.013) 
10,000 obs., 5 lags 0.83 (0) 8.6e-3 (0.45) 
10,000 obs., 15 lags 0.86 (0) 0.012 (0.10) 
10,000 obs., 50 lags 0.85 (0) 6.0e-3 (0.87) 
 
Exhibit 7.  Kolmogorov-Smirnov test statistic (p-value) of the p-value distribution under 
the null hypothesis with the square of Student t 10 degrees of freedom data. 
# observations, # lags Ljung-Box test Rank Ljung-Box test 

 
100 obs., 5 lags 0.13 (0) 0.017 (7.7e-3) 
100 obs., 15 lags 0.19 (0) 0.027 (1.1e-6) 
100 obs., 50 lags 0.28 (0) 0.065 (0) 
1000 obs., 5 lags 0.062 (0) 0.011 (0.20) 
1000 obs., 15 lags 0.083 (0) 7.0e-3 (0.71) 
1000 obs., 50 lags 0.11 (0) 0.018 (2.6e-3) 
10,000 obs., 5 lags 0.021 (4.4e-4) 9.9e-3 (0.28) 
10,000 obs., 15 lags 0.033 (2.9e-7) 0.011 (0.22) 
10,000 obs., 50 lags 0.023 (4.0e-5) 7.2e-3 (0.67) 
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Exhibit 8.  Kolmogorov-Smirnov test statistic (p-value) of the p-value distribution under 
the null hypothesis with the square of Student t 4 degrees of freedom data. 
# observations, # lags Ljung-Box test Rank Ljung-Box test 

 
100 obs., 5 lags 0.28 (0) 0.012 (0.090) 
100 obs., 15 lags 0.34 (0) 0.027 (9.8e-7) 
100 obs., 50 lags 0.45 (0) 0.063 (2.9e-7) 
1000 obs., 5 lags 0.31 (0) 9.2e-3 (0.37) 
1000 obs., 15 lags 0.36 (0) 9.1e-3 (0.39) 
1000 obs., 50 lags 0.40 (0) 0.011 (0.18) 
10,000 obs., 5 lags 0.31 (0) 0.012 (0.10) 
10,000 obs., 15 lags 0.39 (0) 7.2e-3 (0.68) 
10,000 obs., 50 lags 0.43 (0) 6.5e-3 (0.79) 
 
Exhibit 9.  Kolmogorov-Smirnov test statistic (p-value) of the p-value distribution under 
the null hypothesis with the square of Cauchy data. 
# observations, # lags Ljung-Box test Rank Ljung-Box test 

 
100 obs., 5 lags 0.76 (0) 0.013 (0.068) 
100 obs., 15 lags 0.78 (0) 0.022 (7.0e-5) 
100 obs., 50 lags 0.83 (0) 0.065 (0) 
1000 obs., 5 lags 0.92 (0) 7.0e-3 (0.71) 
1000 obs., 15 lags 0.91 (0) 0.013 (0.079) 
1000 obs., 50 lags 0.88 (0) 0.014 (0.036) 
10,000 obs., 5 lags 0.98 (0) 0.012 (0.11) 
10,000 obs., 15 lags 0.97 (0) 8.4e-3 (0.48) 
10,000 obs., 50 lags 0.96 (0) 8.1e-3 (0.52) 
 
Exhibit 10 shows the distribution of the p-value for the 15-lag Ljung-Box test when the 
data are the square of a t with 4 degrees of freedom and 10,000 observations.  The 
distribution when there are 1000 observations is virtually identical.  The null distribution 
of the p-value of the Ljung-Box tests is significantly far from the uniform for all of the 
squared distributions examined. 
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Exhibit 10.  Distribution of the Ljung-Box 15 lag p-value for the square of a t with 4 
degrees of freedom with 10,000 observations. 
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6.  Null Distribution with Binary Data 
 
Exhibits 11 through 13 evaluate the p-value distribution under the null hypothesis of the 
Ljung-Box test when evaluated on binary data.  The distributions appear to be okay when 
the probability of a one is 50%—however, the farther from 50% the probability is, the 
worse the null distribution.  The length of the series also has a large effect. 
 
Exhibit 11.  Kolmogorov-Smirnov test statistic (p-value) of the p-value distribution 
under the null hypothesis with binary data—probability 50% of a one. 
# observations, # lags Ljung-Box test  

 
100 obs., 5 lags 0.013 (0.063)  
100 obs., 15 lags 0.027 (1.8e-6)  
100 obs., 50 lags 0.072 (0)  
1000 obs., 5 lags 0.011 (0.21)  
1000 obs., 15 lags 7.6e-3 (0.60)  
1000 obs., 50 lags 0.014 (0.051)  
10,000 obs., 5 lags 0.012 (0.12)  
10,000 obs., 15 lags 0.011 (0.21)  
10,000 obs., 50 lags 5.4e-3 (0.93)  
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Exhibit 12.  Kolmogorov-Smirnov test statistic (p-value) of the p-value distribution 
under the null hypothesis with binary data—probability 5% of a one. 
# observations, # lags Ljung-Box test  

 
100 obs., 5 lags 0.28 (0)  
100 obs., 15 lags 0.25 (0)  
100 obs., 50 lags 0.33 (0)  
1000 obs., 5 lags 0.043 (0)  
1000 obs., 15 lags 0.040 (0)  
1000 obs., 50 lags 0.048 (0)  
10,000 obs., 5 lags 0.013 (0.076)  
10,000 obs., 15 lags 9.4e-3 (0.34)  
10,000 obs., 50 lags 9.5e-3 (0.32)  
 
Exhibit 13.  Kolmogorov-Smirnov test statistic (p-value) of the p-value distribution 
under the null hypothesis with binary data—probability 1% of a one. 
# observations, # lags Ljung-Box test  

 
100 obs., 5 lags 0.91 (0)  
100 obs., 15 lags 0.83 (0)  
100 obs., 50 lags 0.77 (0)  
1000 obs., 5 lags 0.57 (0)  
1000 obs., 15 lags 0.31 (0)  
1000 obs., 50 lags 0.33 (0)  
10,000 obs., 5 lags 0.099 (0)  
10,000 obs., 15 lags 0.074 (0)  
10,000 obs., 50 lags 0.079 (0)  
 

7.  Power under Continuous Distributions 
 
The power of the Ljung-Box and rank Ljung-Box tests was found for an AR(1) model.  
The AR parameter ranges from 0 to 0.5 in increments of 0.05.  The tests displayed have 
size 5%—tests with size 1% exhibit similar behavior.  The results are also consistent 
across the number of lags.  The first distribution to examine, of course, is the Gaussian—
see Exhibits 14 through 16.  There is very little cost for using the rank test rather than the 
Ljung-Box test when the data truly are Gaussian, at least under an AR(1) alternative. 
 
 
 
 
 
 
 



12 

Exhibit 14.  Power of the Ljung-Box and rank Ljung-Box tests with Gaussian data with 
1000 observations. 
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Exhibit 15.  Power of the Ljung-Box and rank Ljung-Box tests with Gaussian data and 
50 lags. 
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Exhibit 16.  Power of the Ljung-Box and rank Ljung-Box tests with Gaussian data and 
15 lags. 
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Exhibits 16 through 19 show the power for 15 lag tests for the symmetric distributions 
that were studied.  The power of the Ljung-Box test remains remarkably stable as the tails 
lengthen.  The power of the rank test gradually increases, though at the Cauchy it is much 
more powerful.  Under the Cauchy the rank test with 1000 observations is as powerful as 
the Ljung-Box test with 10,000 observations. 
 
 
Exhibit 17.  Power of 15 lag Ljung-Box and rank Ljung-Box tests for data from a t 
distribution with 10 degrees of freedom. 

AR(1) Parameter

P
ow

er
 o

f 1
5 

La
g 

T
es

t

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ljung-Box
Rank Ljung-Box

1000 observations
100 observations

 
 
 



14 

Exhibit 18.  Power of 15 lag Ljung-Box and rank Ljung-Box tests for data from a t 
distribution with 4 degrees of freedom. 
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Exhibit 19.  Power of 15 lag Ljung-Box and rank Ljung-Box tests for data from a 
Cauchy distribution.  The series lengths are 10,000, 1000 and 100. 
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Exhibits 20 through 22 indicate the power for the squared t distributions.  For these cases 
the Ljung-Box test has lost power relative to the symmetric distributions.  The longer the 
tail in the squared distribution, the less power the Ljung-Box test has.  The rank test, in 
contrast, gains power as the tails lengthen.  Curiously, the Ljung-Box test has more 
power for an AR(1) alternative than the rank test under the square of the t with 10 
degrees of freedom.  However the null distribution for the Ljung-Box is decidedly wrong 
in this case, so the rank test will still be preferred. 
 



15 

 
 
Exhibit 20.  Power of 15 lag Ljung-Box and rank Ljung-Box tests for data from the 
square of a t distribution with 10 degrees of freedom. 
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Exhibit 21.  Power of 15 lag Ljung-Box and rank Ljung-Box tests for data from the 
square of a t distribution with 4 degrees of freedom. 
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Exhibit 22.  Power of 15 lag Ljung-Box and rank Ljung-Box tests for data from the 
square of a t distribution with 1 degree of freedom. 
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8.  Conclusions 
 
As long as the data have a distribution with tails no longer than a Student’s t with 10 
degrees of freedom, the Ljung-Box test is preferred to its rank equivalent.  However there 
appears to be little loss of power with the rank test even for the Gaussian.  As the tails 
become longer than a t with 10 degrees of freedom, the null distribution of the Ljung-Box 
suffers, and its power under an AR(1) alternative becomes inferior to that of the rank test. 
 
Under the square of t-distributions—as when testing GARCH models—the rank Ljung-
Box test should be used rather than the Ljung-Box test.  As the tails get heavier, the 
Ljung-Box test loses power while the rank Ljung-Box gains power.  The null distribution 
of the p-value for the Ljung-Box test is seriously suspect when testing autocorrelation of 
variance in cases of practical interest.  The rank Ljung-Box test is well behaved for 
testing GARCH models. 
 
It appears that the number of lags of Ljung-Box tests—whether standard or the rank 
equivalent—should be no more than about 5% of the length of the series, certainly less 
than 15%. 
 
Applying Ljung-Box to binary data appears to be fine as long as the probability of each 
of the digits is approximately equal.  The more unequal the probabilities become, the 
longer the series needs to be in order to have a reliable p-value.  When the length of the 
series is 10,000, the null distribution is acceptable for a probability of 5%, but not 1%. 
 
There are some limitations of the simulations that were performed that could benefit from 
further research.  In particular, models for the alternative that go beyond the AR(1) would 
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be interesting.  A more careful study to determine the maximum number of lags that 
should be used relative to the length of the series would also be valuable. 
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